What is photovoltaics (PV)?

Photovoltaic (PV) cells convert sunlight directly into electricity. PV cells are the solar cells that are often used to power calculators and watches. PV cells are made of semiconducting materials similar to those used in computer chips. When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic effect.

PV cells are typically combined into modules that hold about 40 cells; about 10 of these modules are mounted in PV arrays that can measure up to several meters on a side. These flat-plate PV arrays can be mounted at a fixed angle facing south, or they can be mounted on a tracking device that follows the sun, allowing them to capture the most sunlight over the course of a day. About 10 to 20 PV arrays can provide enough power for a household; for large electric utility or industrial applications, hundreds of arrays can be interconnected to form a single, large PV system.

Some PV cells are designed to operate with concentrated sunlight. These cells are built into concentrating collectors that use a lens to focus the sunlight onto the cells. This approach has both advantages and disadvantages compared with flat-plate PV arrays. The main idea is to use very little of the expensive semiconducting PV material while collecting as much sunlight as possible. But because the lenses must be pointed at the sun, the use of concentrating collectors is limited to the sunniest parts of the country. Some concentrating collectors are designed to be mounted on simple tracking devices, but most require sophisticated tracking devices, which further limit their use to electric utilities, industries, and large buildings.

The performance of a PV cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial PV cell has an efficiency of 15% – about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving PV cell efficiencies while holding down the cost per cell is an important goal of the PV industry, NREL researchers, and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first PV cells, built in the 1950s, had efficiencies of less than 4%.


Go to www.find-solar.org